Math 3450 - Homework # 2 - Part A Equivalence Relations

- 1. A set S and a relation \sim on S is given. For each example, check if \sim is (i) reflexive, (ii) symmetric, and/or (iii) transitive. If \sim satisfies the property that you are checking, then prove it. If \sim does not satisfy the property that you are checking, then give an example to show it.
 - (a) $S = \mathbb{R}$ where $a \sim b$ if and only if $a \leq b$.

Solution:

(i) Yes, ~ is reflexive. Proof: Let a ∈ ℝ. Then a ≤ a. So a ~ a.
(ii) No, ~ is not symmetric. Counterexample: 3 ≤ 4, but 4 ≤ 3. That is, 3 ~ 4 but 4 ≠ 3.

(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then $a \leq b$ and $b \leq c$. So $a \leq c$. Thus $a \sim c$.

(b) $S = \mathbb{R}$ where $a \sim b$ if and only if |a| = |b|.

Solution:

(i) Yes, ~ is reflexive. Proof: Let a ∈ ℝ. Then |a| = |a|. So a ~ a.
(ii) Yes, ~ is symmetric. Proof: Let a, b ∈ ℝ and suppose that a ~ b. Then |a| = |b|. So |b| = |a|. Thus b ~ a.

(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{R}$ and suppose that $a \sim b$ and $b \sim c$. Then |a| = |b| and |b| = |c|. So |a| = |c|. Thus $a \sim c$.

(c) $S = \mathbb{Z}$ where $a \sim b$ if and only if a|b.

(i) Yes, \sim is reflexive. Proof: Let $a \in \mathbb{Z}$. Then a(1) = a. Hence a|a. So $a \sim a$.

(ii) No, ~ is not symmetric. Counterexample: 3|6, but $6 \nmid 3$.

(iii) Yes, \sim is transitive. Proof: Let $a, b, c \in \mathbb{Z}$. Suppose that $a \sim b$ and $b \sim c$. Then a|b and b|c. Thus there exists $k, m \in \mathbb{Z}$ such that ak = b and bm = c. Then c = bm = (ak)m = a(km). So a|c. Thus $a \sim c$.

(d) S is the set of subsets of \mathbb{N} where $A \sim B$ if and only if $A \subseteq B$. Some examples of elements of S are $\{1, 10, 199\}$, $\{2, 7, 10\}$, and $\{2, 10, 3, 7\}$. Note that $\{2, 7, 10\} \sim \{2, 10, 3, 7\}$ Solution: (i) Yes, ~ is reflexive. Proof: $A \subseteq A$ for all $A \in S$.

(ii) No, \sim is not symmetric. Counterexample: $\{3\} \subseteq \{3, 42\}$, but $\{3, 42\} \notin \{3\}$. (iii) Yes, \sim is transitive. Proof: Let $A, B, C \in S$ with $A \sim B$ and $B \sim C$. Then $A \subseteq B$ and $B \subseteq C$. We want to show that $A \subseteq C$. Let $x \in A$. Since $A \subseteq B$, we have that $x \in B$. Since $B \subseteq C$ we have that $x \in C$. So $A \subseteq C$ and thus $A \sim C$.

- 2. Consider the set $S = \mathbb{R}$ where $x \sim y$ if and only if $x^2 = y^2$.
 - (a) Find all the numbers that are related to x = 1. Repeat this exercise for $x = \sqrt{2}$ and x = 0.

Solution:

 $1 \sim 1$ since $1^2 = 1^2$. We also have $1 \sim (-1)$ since $1^2 = (-1)^2$. There are no other elements related to 1. $\sqrt{2} \sim \sqrt{2}$ since $(\sqrt{2})^2 = (\sqrt{2})^2$. We also have $\sqrt{2} \sim (-\sqrt{2})$ since $(\sqrt{2})^2 = (-\sqrt{2})^2$. There are no other elements related to $\sqrt{2}$.

- $0 \sim 0$ since $0^2 = 0^2$. There are no other elements related to 0.
- (b) Prove that \sim is an equivalence relation on S.

Solution:

Proof. <u>Reflexive</u>: We know that $x^2 = x^2$ for all real numbers x. Therefore $x \sim x$ for all real numbers x. So \sim is reflexive. <u>Symmetric</u>: Let $x, y \in \mathbb{R}$. Suppose that $x \sim y$. Since $x \sim y$ we have that $x^2 = y^2$. So $y^2 = x^2$. Therefore $y \sim x$. <u>Transitive</u> Let $x, y, z \in \mathbb{R}$. Suppose that $x \sim y$ and $y \sim z$. Since $x \sim y$ we have that $x^2 = y^2$. Since $y \sim z$ we have that $y^2 = z^2$. So $x^2 = y^2 = z^2$. Therefore $x \sim z$.

(c) Draw a number line. Draw a picture of the equivalence class of 1. Repeat this for x = 0, $x = \sqrt{6}$, x = -3. **Solution:** For the equivalence class of 1, draw the number line and circle the numbers -1, 1.

For the equivalence class of 0, draw the number line and circle the number 0.

For the equivalence class of $\sqrt{6}$, draw the number line and circle the numbers $-\sqrt{6}, \sqrt{6}$.

For the equivalence class of -3, draw the number line and circle the numbers -3, 3.

(d) Describe the elements of S/\sim .

Solution:

If $x \neq 0$, then the equivalence class of x is $\overline{x} = \{-x, x\}$. The equivalence class of 0 is $\overline{0} = \{0\}$.

- 3. Consider the set $S = \mathbb{Z}$ where $x \sim y$ if and only if 2|(x+y).
 - (a) List six numbers that are related to x = 4.

Solution:

 $4 \sim (-4) \text{ since } 2|(4 + (-4)).$ $4 \sim (-2) \text{ since } 2|(4 + (-2)).$ $4 \sim (0) \text{ since } 2|(4 + (0)).$ $4 \sim (2) \text{ since } 2|(4 + (2)).$ $4 \sim (4) \text{ since } 2|(4 + (4)).$ $4 \sim (6) \text{ since } 2|(4 + (6)).$

(b) Prove that \sim is an equivalence relation on S.

Proof. <u>Reflexive</u>: Let $x \in \mathbb{Z}$. Since 2|2x we have that 2|(x + x). So $x \sim x$. <u>Symmetric</u>: Let $x, y \in \mathbb{Z}$ and suppose that $x \sim y$. Thus 2|(x + y). So 2|(y + x). So 2|(y + x). So $y \sim x$. <u>Transitive</u>: Let $x, y, z \in \mathbb{Z}$ and suppose that $x \sim y$ and $y \sim z$. Therefore 2|(x + y) and 2|(y + z). So there exist $k, \ell \in \mathbb{Z}$ such that 2k = x + y and $2\ell = y + z$. Add these equations to get $2k + 2\ell = x + 2y + z$. Subtract 2y from both sides to get $2(k + \ell - y) = x + z$. Note that $k + \ell - y \in \mathbb{Z}$, because $k, \ell, y \in \mathbb{Z}$ and \mathbb{Z} is closed under addition and subtraction. So 2|(x + z). So $x \sim z$.

(c) Draw a picture of the set of integers. Next, circle the numbers that are in the equivalence class of -3.

Solution: Draw a picture and circle these numbers:

 $\ldots, -7, -5, -3, -1, 1, 3, 5, 7, \ldots$

(d) Describe the elements of S/\sim . Draw a picture of several equivalence classes.

Solution: Draw a picture of the following:

$$\overline{0} = \{\dots, -6, -4, -2, 0, 2, 4, 6, \dots\} = \overline{-2} = \overline{2} = \overline{4} = \overline{-4} = \cdots$$

$$\overline{1} = \{\dots, -7, -5, -3, -1, 1, 3, 5, 7, \dots\} = \overline{-1} = \overline{3} = \overline{-3} = \overline{-5} = \cdots$$

So S/\sim is equal to $\{\overline{0},\overline{1}\}$. That is, one equivalence class is the set of all odd numbers; the other equivalence class is the set of all even numbers.

- 4. (Constructing the rational numbers from the integers) Let $S = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if ad = bc.
 - (a) Is (1,5) ~ (−3,−15) ?
 Solution: Yes, because 1(−15) = 5(−3).
 - (b) Is $(-1, 1) \sim (2, 3)$? Solution: No, because $(-1)(3) \neq 1(2)$.
 - (c) Prove that \sim is an equivalence relation.

Proof. <u>Reflexive</u>: Let $(a, b) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Then ab = ba. So $(a, b) \sim (a, b)$. Symmetric: Let $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Suppose $(a, b) \sim (c, d)$. We know that ad = bc, because $(a, b) \sim (c, d)$. So cb = da. Hence $(c, d) \sim (a, b)$. <u>Transitive</u>: Let $(a, b), (c, d), (e, f) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Note that $d \neq 0$ and $f \neq 0$ since $d, f \in \mathbb{Z} - \{0\}$. Suppose $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. We know that ad = bc and cf = de, because $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Thus

$$ad = bc = b\left(\frac{de}{f}\right) = \frac{bde}{f}$$

Thus adf = bde. Since $d \neq 0$ we can divide by d to get af = be. So $(a,b) \sim (e,f)$ since af = be.

Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.

- (d) List five elements from each of the following equivalence classes: $\overline{(1,1)}, \overline{(0,2)}, \overline{(2,3)}.$ Solution: Some possible answers: $(2,2), (3,3), (4,4), (5,5), (47,47) \in \overline{(1,1)}.$
 - $(2,2), (3,3), (1,1), (3,3), (11,11) \in (1,1).$ $(0,1), (0,2), (0,-1), (0,-2), (0,-47) \in \overline{(0,2)}.$ $(2,3), (4,6), (6,9), (-2,-3), (-4,-6) \in \overline{(2,3)}.$
- 5. (Constructing the integers from the natural numbers) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if a+d = b+c.
 - (a) Is (3,6) ~ (7,10) ?
 Solution: Yes, because 3 + 10 = 6 + 7.
 - (b) Is $(1,1) \sim (3,5)$? Solution: No, because $1 + 5 \neq 1 + 3$.

(c) Prove that \sim is an equivalence relation.

 $\begin{array}{l} Proof. \ \underline{\operatorname{Reflexive}}: \ \mathrm{Let} \ (a,b) \in \mathbb{N} \times \mathbb{N}.\\ \\ \mathrm{Then} \ a+b=b+a.\\ \\ \mathrm{So} \ (a,b) \sim (a,b).\\ \\ \underline{\mathrm{Symmetric}}: \ \mathrm{Let} \ (a,b), (c,d) \in \mathbb{N} \times \mathbb{N}.\\ \\ \overline{\mathrm{Suppose}} \ (a,b) \sim (c,d).\\ \\ \mathrm{We} \ \mathrm{know} \ \mathrm{that} \ a+d=b+c, \ \mathrm{because} \ (a,b) \sim (c,d).\\ \\ \mathrm{So} \ c+b=d+a.\\ \\ \mathrm{So} \ (c,d) \sim (a,b).\\ \\ \\ \underline{\mathrm{Transitive}}: \ \mathrm{Let} \ (a,b), (c,d), (e,f) \in \mathbb{N} \times \mathbb{N}.\\ \\ \mathrm{Suppose} \ \mathrm{that} \ (a,b) \sim (c,d) \ \mathrm{and} \ (c,d) \sim (e,f).\\ \\ \mathrm{We} \ \mathrm{know} \ \mathrm{that} \ a+d=b+c \ \mathrm{and} \ c+f=d+e, \ \mathrm{because} \ (a,b) \sim (c,d)\\ \\ \mathrm{and} \ (c,d) \sim (e,f).\\ \\ \mathrm{Add} \ \mathrm{these} \ \mathrm{two} \ \mathrm{equations} \ \mathrm{to} \ \mathrm{get} \ a+c+d+f=b+c+d+e.\\ \\ \\ \mathrm{Subtract} \ c+d \ \mathrm{from} \ \mathrm{both} \ \mathrm{sides} \ \mathrm{to} \ \mathrm{get} \ a+f=b+e.\\ \\ \\ \mathrm{So} \ (a,b) \sim (e,f). \end{array}$

Therefore, \sim is an equivalence relation, because it is reflexive, symmetric, and transitive.

- (d) List five elements from each of the following equivalence classes: $\overline{(1,1)}, \overline{(1,2)}, \overline{(5,12)}.$ Solution: Some possible answers:
 - $(2, 2), (3, 3), (4, 4), (5, 5), (47, 47) \in \overline{(1, 1)}.$ $(2, 3), (3, 4), (4, 5), (5, 6), (47, 48) \in \overline{(1, 2)}.$ $(2, 9), (3, 10), (4, 11), (5, 12), (47, 56) \in \overline{(5, 12)}.$
- 6. Let $S = \mathbb{Z}$. Define the relation \sim on S where $x \sim y$ if and only if 3x 5y is even. Prove that \sim is an equivalence relation on S.

Proof. <u>Reflexive</u>: Let $a \in \mathbb{Z}$. Then 3a - 5a = -2a = 2(-a) is even. Thus, $a \sim a$. Symmetric: Let $a, b \in \mathbb{Z}$ and suppose that $a \sim b$. Then 3a - 5b is even and so 3a - 5b = 2k for some $k \in \mathbb{Z}$. Add 8b - 8a to both sides to get 3b - 5a = 2k + 8b - 8a. Thus 3b - 5a = 2(k + 4b - 4a) where $k + 4b - 4a \in \mathbb{Z}$ because $k, a, b \in \mathbb{Z}$. Thus 3b - 5a is even. So $b \sim a$. Transitive: Let $a, b, c \in \mathbb{Z}$ and suppose that $a \sim b$ and $b \sim c$. Then 3a - 5b is even and 3b - 5c is even. So $3a - 5b = 2k_1$ and $3b - 5c = 2k_2$ where $k_1, k_2 \in \mathbb{Z}$. Adding both equations gives $3a - 2b - 5c = 2k_1 + 2k_2$. Thus $3a-5c = 2(k_1+k_2+b)$ where $k_1+k_2+b \in \mathbb{Z}$ because $k_1, k_2, b \in \mathbb{Z}$. So 3a - 5c is even. Thus $a \sim c$.